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A dynamic site equation derived using the generalized algebraic difference approach was developed for thinned stands of natural longleaf pine (Pinus palustris
Mill.) in the East Gulf region of the United States using 40 years of measurements on 285 permanent plots. The base model predicts height growth of trees
once they reach 4.5 ft and was fit using a varying parameter for each tree and global parameters that are constant for all 3,267 trees. Parameters were
estimated in one step using the dummy variable approach and a first-order autoregressive error term to account for serial correlation. The final base-age
invariant equation allows the user to specify the number of years required for trees to reach 4.5 ft in height.
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Longleaf pine (Pinus palustris Mill.) is managed as both natural
seeded and planted stands in the southeastern United States.
Modeling of early height development is complicated by the

grass stage period, during which no height growth occurs. The
length of time between germination and seedling height initiation in
natural stands usually lasts 4–5 years but may range from 1 to 20
years (Croker and Boyer 1975), and it is followed by a period of
rapid height growth. Emergence from the grass stage can depend on
seedling quality for planted stands, intraspecific competition for
natural stands, interspecific competition for both planted and nat-
ural stands, insect and disease incidence, and climate factors (Croker
and Boyer 1975, Lauer 1987, Barnett 1989, Haywood 2005). Sil-
vicultural practices that reduce competition and improve soil con-
ditions can reduce duration of the grass stage. The incidence of
brown-spot needle blight caused by Mycosphaerellaceae dearnessii
M.E. Barr varies by geographic location and can increase the num-
ber of years a tree remains in the grass stage period (Kais et al. 1986).

This project models height growth of thinned, natural even-aged
longleaf stands regenerated by the shelterwood method using the
Regional Longleaf Pine Growth Study (RLGS) (Farrar 1978).
Stands are considered even-aged because they were established by
methods completed with final overstory removal, but trees may vary
in both age and year of height growth initiation. Previous site index
curves developed for longleaf pine using the RLGS data have been in
the form of anamorphic or simple polymorphic models. Farrar
(1981) used data from the first and second remeasurements to de-
velop an equation that used age in a fourth-order polynomial equa-
tion. Rayamajhi et al. (1999) updated this equation with data from
the sixth remeasurement (30 years) and compared its performance
with a Chapman-Richards type function (Carmean 1972). They
found that the Chapman-Richards model had a higher mean square
error compared with the updated Farrar model and performed
poorly in younger and older age classes. Both efforts defined age as

ring count at dbh plus 7 years to account for the grass stage period
and initial height development.

Site index curves have also been developed for other specific
populations of longleaf pine and have been used to compare height
development for different site classifications. Most models have
been anamorphic. These include graphical curves for second-growth
natural longleaf pine (US Forest Service 1929) with age based on
ring count at dbh plus 7 years, an equation for natural stands (Schu-
macher and Coile 1960) that assumes a 2-year grass stage, and a
base-age invariant Chapman-Richards equation for young longleaf
pine plantations in southwest Georgia (Brooks and Jack 2006) based
on plantation age. A base-age invariant polymorphic equation was
developed for direct seeded longleaf pine in Louisiana (Cao et al.
1997) with age based on year seeded. Boyer (1983) used a Schuma-
cher type model (Schumacher 1939) to compare height growth
patterns of young longleaf pine among old field, prepared forest, and
unprepared forest sites. None of these models explicitly account for
length of the grass stage.

Site index is used as an estimate of site productivity, is used to
predict future height growth, and is an important input in most
growth and yield models. Site index models have not been known
for accurate characterization of early stand development when tree
growth can be strongly influenced by interspecific competition and
when “average” tree growth may be strongly influenced by short-
term climatic events. Models are selected to have logical patterns of
growth in early stand development but prediction of site index in
young stands is usually found to have a large error component.
Longleaf is problematic in this respect because site index models
have not treated the grass stage as a discrete event but as continuous
slow growth over a period that should not be used for projection.
Years in the grass stage may be treated as an assumed constant to
provide an estimate of stand age, or when establishment age is
known, the model will indirectly account for the grass stage period
as an average period for the sample population.

Manuscript received December 4, 2008; accepted September 3, 2009.

Dwight K. Lauer (dklauer.silvics@att.net), Silvics Analytic, 122 Todd Circle, Wingate, NC 28174. John S. Kush, School of Forestry and Wildlife Sciences, Auburn University, Auburn,
AL 36849. We acknowledge Robert Farrar, Jr., for his efforts in maintaining the Regional Longleaf Growth Study. Special thanks are given to the US Forest Service Southern Research
Station for financial support of this work.

Copyright © 2010 by the Society of American Foresters.

28 SOUTH. J. APPL. FOR. 34(1) 2010

A
B

S
T

R
A

C
T



The accurate description of early height growth in longleaf pine
is becoming more important with restoration initiatives over a di-
verse landownership. Comparison of management options and
management interventions may increase the value of this species to
landowners. The difficulty is that longleaf pine may remain in the
grass stage for years and then achieve rapid, near-linear height
growth once taller than 4.5 ft for 10 years. An error of 1 year in time
of emergence during this linear growth period could result in a
2–4-ft error in age–height estimates.

The objective of this project was to develop an updated site index
equation using the RLGS data set that will better estimate height
growth in stands less than 25 years (although use of young stand
estimates will still have limitations) and provide an improved esti-
mate of site productivity by accounting for the discrete grass stage.
The concept is that a measure of site productivity based on height
growth in stands past the grass stage will be more accurate than a
measure of site productivity that includes length of time in the grass
stage (which is dependent on inter- and intraspecific competition,
microsite, seedling quality etc.). Model selection considered
whether data support anamorphic (proportional) or polymorphic
(not proportional with different shapes) models. The model func-
tional form was important to ensure logical outcomes throughout
an age range of over 100 years. It was also desirable to use a base-age
invariant model so that the system of curves provide logical results
when the base age is algebraically changed to be useful in a given
management context. Statistical methods must account for the
unique stand structure of natural stands, account for the pooled
cross sectional and longitudinal structure of the data, and address
the difficulty of determining stand age for longleaf pine.

Data
Data for this project were collected on permanent measurement

plots since 1964 by Auburn University, Mississippi State University,
and other public owners as part of a Forest Service Southern Station
cooperative study investigating production of thinned, even-aged,
naturally regenerated stands in the East Gulf region of the southern
United States. Plots were initially selected to fill an array of cells with
five 20-year age classes, five 10-ft site index classes, and five 30-ft2

basal area classes (Farrar 1979, 1993). Plots were measured every 5
years, with some exceptions, and additional plots were added as the
study progressed. A total of 2,014 plot measurements were com-
pleted covering a wide range of age and height classes (Table 1). Plot
measurements were distributed reasonably well across age class and
measurement years except that stands over 75 years old increased in
number as the study progressed (Table 2).

A subsample of dominant and codominant trees were measured
on 0.1- or 0.2-ac permanent plots. At the time of plot installation,
every fifth tree in each 1-in. dbh class was selected to be measured for
height and cored to determine age if the tree was dominant or
codominant. When possible, there were at least 2 sample trees per
dbh class and a minimum of 10 sample trees per plot unless there
were fewer than 10 trees. Plots were periodically thinned and plots
were added as the study progressed such that the number of mea-
surements per tree differed by plot and could differ by tree within a
plot. Dominant and codominant trees selected from this population
of sampled trees had to be measured at least three times and at least
half as many times as the number of all measurements taken on a
given plot, and they must have been measured at the last or second-
to-last plot measurement. Furthermore, the tree must have been
classified as dominant or codominant for all measurement periods.
This resulted in a data set with total of 19,527 measurements on
3,267 trees distributed over 285 plots. The number of measure-
ments varied per tree, with approximately one-third of trees being
measured three or four times, another third being measured five to
seven times, and the remaining third being measured eight or more
times.

Stand age is not simply defined for this natural stand data set.
Previous site index functions for this data set used average ring count
just below dbh plus 7 years on dominant and codominant trees as
age for each plot (Farrar 1981). Seven years has traditionally been
used to account for the number of years longleaf pine takes to
emerge from the grass stage and reach 4.5 ft. Ring count varies for
trees within a plot at any given measurement. Only 25% of plots had
a ring count range of 3 years or less. The ring count interquartile
range was 3–8 years. Less than 5% of plots had ring count differ-
ences greater than 13 years. Trees were considered residuals from the
previous stand and excluded if they were greater than 10 years older
than the average plot age. For this article, the variable breast height
age (agebh) is defined as ring count just below 4.5 ft.

Model Selection
Preliminary examination of height series and trial fits of many

models determined that height growth was best modeled using a
polymorphic system. Observed growth patterns were that initial
longleaf height growth was nearly linear and rapid once trees are
greater than 4.5 ft tall; that the relationship between height and site
quality was polymorphic but became more proportional at ages
greater than 40 years; and that longleaf continued to grow in height,
albeit at a very slow rate, at ages greater than 90 years. This required

Table 1. Distribution of plot measurements by average breast
height age (agebh), and average total height of dominant and
codominant sample trees.

Agebh

(years)

Number of plots

Total height (ft)

Total6–15 16–35 36–55 56–75 76–95 96–120

�21 17 112 236 52 417
21–40 49 364 120 533
41–60 17 116 285 17 435
61–80 75 246 55 376
81–100 38 127 37 202
101–120 11 29 11 51
Total 17 112 302 656 807 120 2014

Table 2. Distribution of plot measurements by average breast
height age (agebh), and year.

Year

Agebh (years)

Total�21 21–40 41–60 61–80 81–100 101–120

1964–1968 57 45 55 22 179
1969–1973 92 39 62 33 2 228
1974–1978 57 48 65 37 6 213
1979–1983 15 54 54 39 20 182
1984–1988 60 60 40 47 27 234
1989–1993 51 77 32 59 32 2 253
1994–1998 59 60 40 64 34 6 263
1999–2003 19 70 50 47 41 18 245
2004–2007 7 80 37 28 40 25 217
Total 417 533 435 376 202 51 2014
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models that were polymorphic, could exhibit nearly linear rapid
growth early, and did not flatten too much at older ages. Perfor-
mance of models was improved by not considering height develop-
ment between germination and 4.5 ft. The actual length of time
between emergence and attainment of 4.5 ft in height was not mea-
sured on sample trees. Initial attempts to use a constant or fitted
intercept for this period of growth indicated that it was both variable

and correlated with site. Height growth above 4.5 ft and breast
height age were used in fitting models to remove the problem of
describing early growth.

Site index models examined were dynamic equations derived
using the generalized algebraic difference approach (GADA). The
theory of this approach, desirable characteristics of such derivations,
and statistical considerations are discussed in detail by Cieszewski

Figure 1. Box plot of residuals by breast height age class (10 � 5–14, 20 � 15–24, etc.) for Equation 2 (top) and Equation 4 (bottom).
Boxes denote 25th and 75th percentiles, whiskers 10th and 90th percentiles, and dots 5th and 95th percentiles. Median and mean are
represented by solid and dashed lines, respectively.
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and Bailey (2000). In summary, this method expands a base equa-
tion Y � f(t) that describes growth as a function of time (age), t, into
an explicit three-dimensional system Y � f(t, X), where X is a theo-
retical growth intensity variable that describes how growth is related
to site-specific dynamics. The change of site-specific parameters
across site is defined as a function of X. Since X cannot be measured

directly, it is parameterized in terms of initial conditions Y0 and t0.
The resulting models are base-age invariant flexible functions with
variable asymptotes that can be polymorphic. These models have
been used for many species, including loblolly pine (Diéguez-
Aranda et al. 2006), subalpine fir (Cieszewski 2003), and Douglas-
fir (Cieszewski 2001).

Figure 2. Height residuals versus 1 and 2 interval lagged age residuals for Equation 4. Residuals are plotted without autocorrelation
parameters, with first-order (AR(1)) and second-order (AR(2)) autoregressive error structure.
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Many models were rejected because of their inability to describe
rapid early height growth and the asymptotic pattern in older stands.
Polynomial models were not used because a major objective of this
project was to improve the performance of models for both young
and old stands through the use of models with reasonable biological
patterns of growth. Two final models were selected for comparison.
The first is based on the function proposed by von Bertalanffy
(1949, 1957) and used by Richards (1959) that has been widely used
in forestry,

Y � a1�1 � exp(�a2t�)
a3, (1)

where a1 is an asymptote, a2 is a rate parameter, and a3 is a pattern
parameter. Examination of various algebraic difference approach
formulations, in which only one parameter is related to site, indi-
cated that models that related the rate or asymptote parameter to site
were not adequate and that more than one parameter needed to be a
function of site characteristics. A GADA formulation for Equation 1
in which the asymptote and pattern parameters are related to site
and related to each other by a linear function is as follows (Krum-
land and Eng 2005).

Y � Y0� 1 � exp(�bl t)

1 � exp(�b1t0)
��b2�b3/X0�

, (2)

X0 � 0.5�ln Y0 � b2L0 � �(lnY0 � b2L0 )2 � 4b3L0 ),

L0 � ln(1 � exp(�b1t0 )).

Figure 3. Fitted curves using Equation 9 with S43�7 (base age 50 with 7 years for trees to reach 4.5 ft) for site indices of 40, 50, 60,
70, 80, 90 ft overlaid with plot average height–age trajectories.

Table 3. Comparison of parameter estimates for equation 4 with
no autoregressive error, first-order autoregressive (AR1), and sec-
ond-order autoregressive (AR2) error structures.

AR error
structure Parameter Estimate SEa t value

Approximate pr.
��t�

None b1 73.327 1.538 47.7 0.001
b2 1877.54 79.31 23.7 0.001
b3 1.226 0.005 257.6 0.001

AR1 b1 77.080 1.637 47.1 0.001
b2 1723.39 86.62 19.9 0.001
b3 1.235 0.005 228.9 0.001
�1 0.4744 0.0087 54.81 0.001

AR2 b1 77.385 1.642 47.1 0.001
b2 1708.07 87.11 19.6 0.001
b3 1.236 0.005 226.3 0.001
�1 0.4881 0.0096 50.86 0.001
�2 0.0318 0.0114 2.77 0.006

a AR, autoregressive; SE, standard error.

Table 4. Root mean square error (RMSE), coefficient of multiple
determination (R squared), log likelihood (LL), Akaike’s information
criteria (AIC), and Durbin-Watson test statistic for Equation 4 fit
with different autoregressive error structures.

Statistic

Autoregressive error structure

None AR1 AR2

RMSE 2.4270 2.2678 2.2676
R-squared 0.9872 0.9888 0.9888
LL �43,232 �41,907 �41,904
AIC 93,003 90,356 90,350
Durbin-Watsona 0.95 1.46 1.47

a Durbin-Watson statistic calculated using panel data formula.
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The second model is based on the Hossfeld (1822) model:

Y �
a1

1 � a2t
�a3

, (3)

which has been used with the GADA formulation by Cieszewski
(2002, 2003) and adopting the formulation in Diéguez-Aranda et
al. (2006) as follows.

Y �
b1 � X0

1 � �b2/X0�t�b3
, (4)

X0 � 0.5�Y0 � b1 � ��Y0 � b1�
2 � 4b2Y0t0

�b3�.

Analysis
Estimation methods for permanent plot measurements usually

use the average height of dominant and codominant trees on each
plot as the experimental unit in the curve fitting process. The
method here used individual-tree data as the experimental unit be-
cause ring-count at dbh varies within plots for natural longleaf pine.

The statistical model is as follows:

Y � f �Y0, b1, b2, b3, t0, t� � eij, (5)

where Y0 � Y0ipi is a tree specific parameter estimated for each tree,
with pi � 1 for tree i, 0 otherwise; and eij is the error for measure-
ment j on tree i that is assumed to be identically and independently
distributed with mean 0. The estimation of Y0i as a unique param-
eter for each series of measurements on an individual using dummy
variables (pi) is a technique described by Cieszewski et al. (2000) in
which the model is not restricted to pass through an observed spe-
cific point at base age. The use of a base-age invariant model and
base-age invariant method for estimating parameters are used here
in the sense of Bailey and Clutter (1974). For these data, Y is total
tree height � 4.5 ft, and Y0 is the estimated total height � 4.5 ft at

a base age ring-count of 50 years (t0). This method simultaneously
estimates fixed effects (b1, b2, b3) that are the same for all trees and
random effects (Y0i) that are unique for each tree.

Since serial correlation is expected for repeated measurements on
the same individual, autocorrelation was modeled as a stationary
autoregressive process, AR(n), as described by Cieszewski (2003).
First- and second-order autoregressive error terms were tested as
follows:

AR(1): eij � d1�1eij�1 � �ij (6)

AR(2): eij � d1�1eij�1 � d2�2eij�2 � �ij (7)

where eij is the jth ordinary residual for a measurement on the ith
individual, d1 � 1 for j �1 and 0 for j � 1, d2 � 1 for j � 2 and 0
for j � 2, and �1, �2 are autoregressive parameters to be estimated.
Models were fit using the SAS/ETS model procedure (SAS Institute,
Inc., 2004).

The use of individual-tree data instead of plot averages is one of
utility for this data set. The usual approach for developing site index
equations is to use plot average height growth series with approxi-
mately the same number of sample trees per plot such that the error
term in Equation 5 has the desired properties. The utility of a site
index function is based on the theoretical construct that the global
model parameters are the same for all plots. It is difficult to construct
a situation where this does not also imply that the global parameters
are the same for individual trees. The methodology used here was
considered the best way to use data from this rather large data set,
both in number of plots and number of trees, to construct a site
index equation.

The use of plot averages is problematic for this data set. The
number of sample trees varies by plot and varies by age for a given
plot. The plot average of t (age) is not an average of trees of the same
age for a given measurement period and its distribution depends on
the variation of age within a plot. The plot average of Y (height) is
based on a sample of trees that differ in age and a sample that is
changing through time because of thinning from below. One
method for handling these issues would be to select a small subset of
trees on each plot that were present at all evaluations and were of the
same age. An attempt to select such a sample resulted in a rather
small sample of trees that were not truly representative of actual
stand conditions.

The individual-tree approach used here resolves the problems of
measurement age and removal of trees in this long-term data set but
does not address correlation among trees on a plot. A multilevel,
nonlinear model approach that accounts for nested sources of vari-
ability might be a more reasonable statistical model, but it is not
clear how to use such a model with this data set. In the current
approach, the estimation of a fixed effect parameter for each
individual tree given a set of global parameters for all trees provides
an independent estimate of site index for each tree. However, the
additional information of correlation among trees on a plot is not
used. One effect of within plot correlation on the estimate of global
parameters is that of weighting the influence of each plot with re-
spect to sample size, in this case, that of weighting estimates toward
younger stands. This methodology avoids parameter bias due to age
structure and thinning, defines reasonable patterns of growth by
choice of a mathematical model, and uses a large sample of trees and

Figure 4. Difference in estimated site index methods by age class.
Difference is averaged tree site index estimates on a plot minus site
index estimated using average plot age and height.
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plots to characterize the population. The result is a site index equa-
tion that is useful and describes observed patterns of growth.

Model Comparison
Initial comparison of Equations 2 and 4 was performed to exam-

ine model performance over the range of ages. Scatter plots were not
useful with more than 19,000 observations. Instead, box plots of
residuals by age class were compared, and standard deviations of
residuals were calculated by age class using models without autocor-
relation terms included. Equation 4 performed better than Equation
2 in the sense that average residuals where closer to 0 throughout the
age class range (Figure 1). This was particularly true for the young
and old age classes. Equation 2 had difficulty in prediction for trees
less than 25 years (ring count) and did not do well in predicting
continued but slow growth for trees older than 75 years. Equation 4
performed reasonably well throughout the range, with underpredic-
tion for age classes 20 and 110. It was observed that a small percent-
age of trees in the 20-year age class surge in height. At ages over 80

years, crowns have flattened, and height patterns are the combina-
tion of slow growth, averaging 1–2 ft over a 5–10-year period, and
leader breakage. The model average includes negative growth on
some trees due to leader breakage for older trees.

Equation 4 was selected for further analysis because of its better
performance. The interquartile ranges of residuals for this equation
in Figure 1 were comparable among age classes. Residual standard
deviations ranged from 1.8 to 2.2 ft for age classes 30–90 years, 2.3
and 2.4 ft for age classes 10 and 20, and 2.3 and 2.8 ft for age classes
100 and 110. Further analysis of Equation 4 involved the compar-
ison of this model with respect to serial correlation.

Serial correlation was examined using scatter plots of age lagged
residuals, examination of fit statistics for models with different error
structures, and the panel data Durbin-Watson test statistic. Plots of
age lag 1 and age lag 2 residuals for Equation 4 (Figure 2) without
autoregressive parameters detected a pattern of positive correlation
with age lag 1 residuals. This was not apparent for age lag 1 and age
lag 2 residuals with AR1 or AR2 error structures. Global parameters

Figure 5. Plot-level estimated site index trajectories using Farrar’s 1981 equation (top) and Equation 9 (bottom).
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(Table 3) are very similar for the AR1 and AR2 models. The assump-
tions for the panel data Durbin-Watson statistic (error is normally
distributed) are likely violated with this data but values closer to 2
should be better. This statistic improved from 0.95 to 1.46 and 1.47
for the AR1 and AR2 models, respectively. Fit statistics (Table 4) are
essentially the same for both the AR1 and AR2 models. The log
likelihood (larger is better) and Akaike’s information criteria
(smaller is better) (Akaike 1974) indicated a small improvement
using the AR2 model. This improvement was not enough to adopt
the more complex AR2 error structure over AR1. The AR1 model
was adopted for further examination.

Equation 4 models height growth from the time a tree reaches
4.5 ft. The base age–invariant Equation 4 can be modified to ac-
count for age when a tree reaches 4.5 ft for height predictions, as

H � 4.5 �
b1 � X0

1 � �b2/X0��age � G��b3
(8)

X0 � 0.5��Src�G � 4.5� � b1

� ���Src�G � 4.5� � b1�
2 � 4b2�Src�G � 4.5��Brc�G � G��b3�,

and site index prediction as

Src�G � 4.5 �
b1 � X0

1 � �b2/X0��Brc�G � G�b3
(9)

X0 � 0.5�H � 4.5 � b1

� ��H � 4.5 � b1�
2 � 4b2�H � 4.5��age � G)�b3�,

where age is stand age in years, G is the age at which trees reach 4.5
ft, S is site index, B is site index base age, H is total height, and global
parameters b1 � 77.080, b2 � 1723.39, b3 � 1.235. The tree-spe-
cific and autocorrelation parameters are not included. Subscripts for
S and B indicate how base age is referenced, with S43�7 indicating
base age 50 years with a 43-year dbh ring count and 7 years to reach

Figure 6. Differences in estimated site index on permanent measurement plots using Farrar’s 1981 model and Equation 9 compared by
age (a) and Equation 9 site index (b). Differences were computed as Equation 9 site index minus Farrar 1981 site index.
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4.5 ft (G). In practice, G can be measured or assumed. S50�0 can be
used as a measure of site potential to compare stands that vary with
respect to G if agebh is known. Equation 8 predicted values for site
indices of 40–90 ft are plotted with average plot height-age trajec-
tories in Figure 3 using the traditional 50-year base age with 7 years
to reach 4.5 ft in height (S43�7).

Discussion and Conclusion
Previous site index models used plot average age, plot average

height, and an assumed length of grass stage. These variables, and
the fitted equation, would necessarily be influenced in some un-
known way by removal of sample trees by thinning, age variation
within a given plot (especially in young stands), and variation in the
grass stage period. Equations 8 and 9 were developed using tree-spe-
cific parameters such that single tree height-age series were used to
estimate the global model parameters that are not dependent on
early development.

The proper way to use Equation 9 is to average site index calcu-
lated for each tree as opposed to using average plot age and height. In
practice, the use of plot average age and height results in similar
estimates for older stands with some bias in young stands. Differ-
ences between average tree site index and site index based on plot
average age and height were less than 1 ft for stands over 15 years of
age with this data set (Figure 4).

Performance of Equation 9 was compared with the original site
index equation (Farrar 1981) by examining prediction trajectories
on sample plots. Site indices using Equation 9 were the average of
individual tree estimates using base age 5043�7 as is assumed by
Farrar’s equation. Ideally, site index estimates at different ages
should remain close for a given plot (horizontal trajectories). Plotted
trajectories (Figure 5) clearly show the estimation of site index in
young stands is improved by Equation 9 but that estimation of
young stand site index is still subject to some error. Outside the
young stand age range, it is difficult to conclude that Equation 9 has
improved estimates with both models showing similar patterns of
longitudinal development. Equation 9 trajectories appear more hor-
izontal for both high and low site indices at older ages. Equation 9
estimates, based on longer-term data, also differ in absolute terms.
Equations differ for young ages, are similar for ages close to 50, and
depart from each other at older ages (Figure 6a). Differences plotted
against Equation 9 site index predictions (ignoring the large differ-
ences that are likely for young age estimates) suggest that Equation
9 expands the range of site index. Lower site indices are predicted for
many plots on poorer sites and higher site indices for many plots on
higher sites (Figure 6b). A definitive method of evaluating Equation
9 performance is not possible because of the lack of a definitive site
index value for each plot in thinned stands where trees vary with
respect to ring count.

This long-term permanent plot data has allowed the develop-
ment of a site index equation for stands up to 120 years of age. The
use of a base-age invariant equation that allows the input of the
number of years it takes trees to reach 4.5 ft may allow Equations 8
and 9 to be more generally applied if the concept of site index
referenced by ring count age and years to reach 4.5 ft is adopted for
longleaf pine. Since these equations are based on height growth once
trees reach 4.5 ft, they may prove to be more universal if the pattern
of height growth above 4.5 ft is similar for longleaf stands of differ-
ent origin or geographical locations. This hypothesis remains to be
tested.

The discrete grass stage of longleaf complicates the selection of a
site index reference age. The site index equation presented here
would not be necessary for other species because a defined base age
would be chosen. In this case, a base age reference is dependent on
the length of the grass stage. The nontraditional use of ring count
age at dbh for both longleaf pine site index and inputs into growth
and yield models would improve the clarity of longleaf pine site
quality estimates and growth and yield equations that use stand
height or site index as model variables. In this case, the use of S25�0

or S50�0 would be preferred.
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